当前位置: > 如图,在△ABC中,E、F分别是AB、AC上的点,AD平分∠BAC,DE⊥AB,DF⊥AC,求证:AD垂直平分EF....
题目
如图,在△ABC中,E、F分别是AB、AC上的点,AD平分∠BAC,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.

提问时间:2021-03-04

答案
证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,∠EAD=∠FAD,∠AED=∠AFD=90°,
∴∠EDA=180°-∠AED-∠EAD,∠FDA=180°-∠AFD-∠FAD,
∴∠EDA=∠FDA,
∵DE=DF(已证),
∴DG垂直平分EF(三线合一),
即AD垂直平分EF.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.