当前位置: > 已知f(x)是定义在R上不恒为零的函数,对于任意的x,y∈R,都有f(x•y)=xf(y)+yf(x)成立. 数列{an}满足an=f(2n)(n∈N*),且a1=2.则数列的通项公式an=_....
题目
已知f(x)是定义在R上不恒为零的函数,对于任意的x,y∈R,都有f(x•y)=xf(y)+yf(x)成立. 数列{an}满足an=f(2n)(n∈N*),且a1=2.则数列的通项公式an=______.

提问时间:2021-03-04

答案
由于an=f(2n)则an+1=f(2n+1)且a1=2=f(2)
∵对于任意的x,y∈R,都有f(x•y)=xf(y)+yf(x)
∴令x=2n,y=2则f(2n+1)=2nf(2)+2f(2n
∴an+1=2an+2×2n
an+1
2n+1
an
2n
=1

∴数列{
an
2n
}是以
a1
2
=1
为首项公差为1的等差数列
an
2n
=1+ (n−1)×1=n

∴an=n2n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.