当前位置: > 过抛物线x^2=2py(p>0)的焦点F作倾斜角为30°的直线与抛物线分别交与AB两点,(A在y轴左侧)则|AF|/|FB|=?...
题目
过抛物线x^2=2py(p>0)的焦点F作倾斜角为30°的直线与抛物线分别交与AB两点,(A在y轴左侧)则|AF|/|FB|=?

提问时间:2021-03-03

答案
如果过A点做AE⊥BD于E点,则根据几何图形可得出:BE=BD-AC,从而有BE=FB-AF,而AB的倾斜角为30度,对应在△ABE中有∠BAE=30度,于是,sin∠BAE=BE/AB=1/2,AB=2BE,(BF+AF)=2(BF-AF),所以有AF:FB=1:3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.