当前位置: > 基本不等式问题...
题目
基本不等式问题
在半径为R的圆形铁皮上割去一个圆心角为a的扇形,使剩下部分围成一个圆锥,a为何值时圆锥的容积最大?
答案a=2*pi*(1-√6/3)要求用不等式求解

提问时间:2021-03-03

答案
在半径为R的圆形铁皮上割去一个圆心角为a的扇形,使剩下部分围成一个圆锥,a为何值时圆锥的容积最大?
设所围园锥的底面半径为r,高为h,体积为V,那么有等式:
V=(1/3)πr²h.(1)
其中r=R(2π-α)/2π=R(1-α/2π),h=√(R²-r²),代入(1)式得:
V=(1/3)πR²(1-α/2π)²√(R²-r²)=(1/3)πR³(1-α/2π)²√[1-(r/R)²]=(1/3)πR³(1-α/2π)²√[1-(1-α/2π)²]
=(1/3)πR³√{(1-α/2π)⁴[1-(1-α/2π)²]}=(1/3)πR³√{(1-α/2π)²(1-α/2π)²[1-(1-α/2π)²]}
=(1/3)πR³(1/√2)√{(1-α/2π)²(1-α/2π)²[2-2(1-α/2π)²]}
=(√2/6)πR³√{(1-α/2π)²(1-α/2π)²[2-2(1-α/2π)²]}≤(√2/6)πR³√[(2/3)³]=(2√3/27)πR³
当且仅仅当(1-α/2π)²=2-2(1-α/2π)²,即(1-α/2π)²=2/3,1-α/2π=√6/3,α=2π(1-√6/3)时等号
成立.
其中应用了基本不等式:
(1-α/2π)²(1-α/2π)²[2-2(1-α/2π)²]≤{[(1-α/2π)²+(1-α/2π)²+[2-2(1-α/2π)²]/3}³=(2/3)³
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.