当前位置: > 不等式x2+(p-1)x+1>x+p,当|p|≤2时恒成立,则x的取值范围是_....
题目
不等式x2+(p-1)x+1>x+p,当|p|≤2时恒成立,则x的取值范围是______.

提问时间:2021-03-03

答案
原不等式为(x-1)p+(x-1)2>0,
令f(p)=(x-1)p+(x-1)2,它是关于p的一次函数,
定义域为[-2,2],由一次函数的单调性知f(-2)=-2(x-1)+(x-1)2>0,且f(2)=2(x-1)+(x-1)2>0
解得x<-1或x>3.
即x的取值范围是(-∞,-1)∪(3,+∞).
故答案为:(-∞,-1)∪(3,+∞).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.