当前位置: > 1/n+1+1/n+2+1/n+3+...+1/2n>m/24n对于一切n∈n都成立,则正整数m的最大值为...
题目
1/n+1+1/n+2+1/n+3+...+1/2n>m/24n对于一切n∈n都成立,则正整数m的最大值为

提问时间:2021-03-03

答案
1/(n+1)+1/(n+2)+1/(n+3)+...+1/2n的每一项都>=1/2n,共有n个,
所以1/(n+1)+1/(n+2)+1/(n+3)+...+1/2n>n*1/2n=1/2,
令m/24n=1/2的m=12n,m的最大值为12n.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.