当前位置: > 求当n=1,2,3,4,5时 代数式n^2+3n+1的值 能判定n^2+3n+1对于任何正整数n,它的值都是奇数吗 请说明理由...
题目
求当n=1,2,3,4,5时 代数式n^2+3n+1的值 能判定n^2+3n+1对于任何正整数n,它的值都是奇数吗 请说明理由

提问时间:2021-03-03

答案
值分别是5,11,19,29,41
判定:n^2+3n+1的值都是奇数
因为n^2+3n=(n+3)n+1
因为n和n+3中至少有一个偶数
所以(n+3)n为偶数
所以(n+3)n+1为奇数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.