题目
如图,AD、BE是△ABC的高,DF⊥AB于F,DF交BE于G,FD的延长线交AC的延长线于H,求证:DF2=FG•FH.
提问时间:2021-03-03
答案
证明:∵BE⊥AC,∴∠ABE+∠BAE=90°,
∵DF⊥AB,∴∠AHF+∠BAE=90°,
∴∠ABE=∠H,
又∵∠BFG=∠HFA=90°,
△BFG∽△HFA,
∴
=
,
∴BF•AF=FG•HF,
在Rt△ADB中,DF2=BF•AF,
∴DF2=FG•FH.
∵DF⊥AB,∴∠AHF+∠BAE=90°,
∴∠ABE=∠H,
又∵∠BFG=∠HFA=90°,
△BFG∽△HFA,
∴
BF |
HF |
FG |
AF |
∴BF•AF=FG•HF,
在Rt△ADB中,DF2=BF•AF,
∴DF2=FG•FH.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点