当前位置: > 已知函数f(x)=-x2+ax+b2-b+1,(a,b∈R)对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是(  ) A.-1<b<0 B....
题目
已知函数f(x)=-x2+ax+b2-b+1,(a,b∈R)对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是(  )
A. -1<b<0
B. b>2
C. b>2或b<-1
D. b<-1

提问时间:2021-03-02

答案
∵对任意实数x都有f(1-x)=f(1+x)成立,
∴函数f(x)的对称轴为x=1=
a
2
,解得a=2,
∵函数f(x)的对称轴为x=1,开口向下,
∴函数f(x)在[-1,1]上是单调递增函数,
而f(x)>0恒成立,f(x)min=f(-1)=b2-b-2>0,
解得b<-1或b>2,
故选C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.