当前位置: > 连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,那么点P在圆x^2+y^2=17内部的概率为___...
题目
连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,那么点P在圆x^2+y^2=17内部的概率为___
A.1/2 B.1/3 C.1/4 D.1/5
我自己是这样解的:
因为是掷两次,所以一共有6*6=36种
而由x^2+y^2=17及根号17>4可得在以(0,0)为圆心,半径为根号17的圆内部一共有这16种结果
(1,1)(1,2)(1,3)(1,4)
(2,1)(2,2)(2,3)(2,4)
(3,1)(3,2)(3,3)(3,4)
(4,1)(4,2)(4,3)(4,4)
那么概率应该是16/36=4/9啊

提问时间:2021-03-02

答案
你把(4,4)代进去明显不行.x,y必须同时小于根号17,但这是必要不充分条件.这是很基本的古典概型,精确画一个坐标系,点清(1,1),(2,2)这些点,再画一个圆,数一下就行.
结果我没算,但这么基本的题应该会做,不然高考数学会死的很惨.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.