当前位置: > 求证:等边三角形内任意一点到三边的距离为定值...
题目
求证:等边三角形内任意一点到三边的距离为定值

提问时间:2021-03-02

答案
设三角形为ABC,内部的点为P,P到三边的距离为h1,h2,h3
△ABC的高为h,边长为a
连接PA,PB,PC
利用面积可得:
1/2ah1+1/2ah2+1/2ah3=1/2ah
所以:h1+h2+h3=h
是定值
PS:等边三角形内任意一点,到三边距离的和,等于它的高
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.