当前位置: > 计算 lim(x->0)(1+1/2x)^x...
题目
计算 lim(x->0)(1+1/2x)^x

提问时间:2021-03-02

答案
解法一:原式=lim(x->0){(1+1/2x)^[(2/x)(x²/2)]}
=[lim(x->0){(1+1/2x)^(2/x)]^[lim(x->0)(x²/2)]
=e^0 (应用重要极限lim(x->0)[(1+x)^(1/x)]=e)
=1;
解法二:原式=lim(x->0){e^[xln(1+x/2)]}
=e^{lim(x->0)[xln(1+x/2)]
=e^(0*ln1)
=e^0
=1.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.