题目
求助高手解决高数问题f''(x)在[a,b]上连续,证明
f ''(x)在[a,b]上连续,证明:存在一个m,使f(x)在a(下限),b上的定积分等于1/2(b-a)f(1/2 a + 1/2 b) + 1/24 (b-a)^3 f ''(m)
非常感谢
f ''(x)在[a,b]上连续,证明:存在一个m,使f(x)在a(下限),b上的定积分等于1/2(b-a)f(1/2 a + 1/2 b) + 1/24 (b-a)^3 f ''(m)
非常感谢
提问时间:2021-03-01
答案
你确定题目中第一项有1/2吗
假设f(x)=3,是常数函数,那么f"(m)=0
无论m取何值,都有
左侧=∫f(x)dx=3(b-a)
右侧=3/2 * (b-a)
显然不成立,矛盾在于第一项的系数1/2
我可以99%的肯定题目是没有1/2的,除了上面的例子,更因为可以给出修改后题目(去掉1/2)的证明.
证明:
f(x)在(a+b)/2做泰勒展开到2介余项
f(x)=f((a+b)/2)+f'((a+b)/2)*(x-(a+b)/2)+[f"(ε)/2]*(x-(a+b)/2)^2
对f(x)在[a b]上积分
∫f(x)dx =∫f((a+b)/2)+f'((a+b)/2)*(x-(a+b)/2)+[f"(ε)/2]*(x-(a+b)/2)^2 dx
=(b-a)*f((a+b)/2)+∫[f"(ε)/2]*(x-(a+b)/2)^2 dx (算一下,第2项积分是0)
因为f"(x)在[a,b]上连续,所以P
假设f(x)=3,是常数函数,那么f"(m)=0
无论m取何值,都有
左侧=∫f(x)dx=3(b-a)
右侧=3/2 * (b-a)
显然不成立,矛盾在于第一项的系数1/2
我可以99%的肯定题目是没有1/2的,除了上面的例子,更因为可以给出修改后题目(去掉1/2)的证明.
证明:
f(x)在(a+b)/2做泰勒展开到2介余项
f(x)=f((a+b)/2)+f'((a+b)/2)*(x-(a+b)/2)+[f"(ε)/2]*(x-(a+b)/2)^2
对f(x)在[a b]上积分
∫f(x)dx =∫f((a+b)/2)+f'((a+b)/2)*(x-(a+b)/2)+[f"(ε)/2]*(x-(a+b)/2)^2 dx
=(b-a)*f((a+b)/2)+∫[f"(ε)/2]*(x-(a+b)/2)^2 dx (算一下,第2项积分是0)
因为f"(x)在[a,b]上连续,所以P
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1色彩斑斓的意思是什么
- 2怎样记住化学式,如:石灰CaCO3,CH3OH甲醇, CO(NH2)2尿素 CH3COOH乙酸(醋酸)
- 3how a() food?what food do you like?根据括号前单词填括号(初一内容)
- 4用四七二这三这个数加八在乘一等于多少?脑筋急转弯
- 5why do we need a name?(200)
- 6计算(m-n-2q)^2 和 -3分之2(x-y)^2*4分之3(x-y)^4(x-y)3请问怎么写?
- 7已知(1/2)^(2x+4y)=1/1024,(1/2)^2x=1/16,求(1/2)^4y的值
- 8由相同偏旁的字组成的词.
- 9英语翻译
- 10师父的父的读音是什么?
热门考点