当前位置: > 已知圆o:x^2+y^2=4和点(1,a),若a=√2,过点M的圆的两条弦AC,BD互相垂直,求AC+BD的最大值...
题目
已知圆o:x^2+y^2=4和点(1,a),若a=√2,过点M的圆的两条弦AC,BD互相垂直,求AC+BD的最大值

提问时间:2021-03-01

答案
如图,作OE⊥AC、OF⊥BD,分别连接OB、OM、OC.
则:OE²=OC²-CE², OF²=ME²=OM²-OE²=OM²-(OC²-CE²)=OM²+CE²-OC²,
    BF²=OB²-OF²=OB²-(OM²+CE²-OC²)=OB²+OC²-OM²-CE²=2(OB)²-OM²-CE².
由题意知:OB=2、 OM=√3 ,故:BF=√(5-CE²).
则:AC+BD=2CE+2BF=2(CE+BF)=2[CE+√(5-CE²)]
由不等式x+y≤√[2(x²+y²)]得:CE+√(5-CE²)≤√[2(CE²+5-CE²)=√10.
所以:AC+BD≤2√10,即AC+BD的最大值为2√10.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.