当前位置: > 证明xn=(sqr(nn+aa)-n )/n的极限为1...
题目
证明xn=(sqr(nn+aa)-n )/n的极限为1

提问时间:2021-03-01

答案
极限为0和-2吧从几何意义出发,sqr(n^2+a^2)可以看成是一个n和a为边的直角三角形的斜边.那么设n对的角为θ,那么n=a*tanθ,sqr(n^2+a^2)=a/cosθ.那么题目就转化为证明xθ=(a/cosθ-a*tanθ)/(a*tanθ)=(1-sinθ)/sin...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.