当前位置: > 已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE. 求证:(1)AE=CF;(2)AF∥CE....
题目
已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE.
求证:(1)AE=CF;(2)AF∥CE.

提问时间:2021-02-27

答案
证明:(1)∵BF=DE,
∴BE=DF,
在△ABE和△CDF中,
AB=CD
∠B=∠D
BE=DF

∴△ABE≌△CDF(SAS),
∴AE=CF;
(2)∵△ABE≌△CDF,
∴∠AEB=∠CFD,
∴AE∥CF,
∵AE=CF,
∴四边形AECF是平行四边形,
∴AF∥CE.
(1)由BF=DE可得BE=DF,从而可根据SAS判定△ABE≌△CDF,由全等三角形的对应边相等即可得到结论.
(2)由全等三角形的对应角相等可得∠AEB=∠CFD,根据内错角相等两直线平行可得AE∥CF,再根据有一组边平行且相等的四边形是平行四边形,从而不难证得结论.

平行四边形的判定与性质;全等三角形的判定与性质.

此题主要考查学生对平行四边形的判定及性质和全等三角形的判定及性质的综合运用能力.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.