题目
如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(1)求证:AB⊥PE;
(2)求二面角A-PB-E的大小.
(1)求证:AB⊥PE;
(2)求二面角A-PB-E的大小.
提问时间:2021-02-27
答案
(1)证明:连结PD,∵PA=PB,∴PD⊥AB.
∵DE∥BC,BC⊥AB,DE⊥AB.
又∵PD∩DE=E,∴AB⊥平面PDE,
∵PE⊂平面PDE,∴AB⊥PE.
(2)∵平面PAB⊥平面ABC,
平面PAB∩平面ABC=AB,PD⊥AB,PD⊥平面ABC.
则DE⊥PD,又ED⊥AB,PD∩平面AB=D,
DE⊥平面PAB,
过D做DF垂直PB与F,连接EF,则EF⊥PB,
∴∠DFE为所求二面角的平面角
∴DE=
,DF=
∵DE∥BC,BC⊥AB,DE⊥AB.
又∵PD∩DE=E,∴AB⊥平面PDE,
∵PE⊂平面PDE,∴AB⊥PE.
(2)∵平面PAB⊥平面ABC,
平面PAB∩平面ABC=AB,PD⊥AB,PD⊥平面ABC.
则DE⊥PD,又ED⊥AB,PD∩平面AB=D,
DE⊥平面PAB,
过D做DF垂直PB与F,连接EF,则EF⊥PB,
∴∠DFE为所求二面角的平面角
∴DE=
3 |
2 |
|