当前位置: > 当x→0时,函数e^(sinx)-e^x是几阶无穷小?...
题目
当x→0时,函数e^(sinx)-e^x是几阶无穷小?
如题.

提问时间:2021-02-27

答案
e^(sinx)-e^x=e^x×[e^(sinx-x)-1].
x→0时,e^x→1,e^(sinx-x)-1等价于sinx-x.
使用泰勒公式,sinx-x=(x-x^3/3!+〇(x^3))-x=-1/6×x^3+〇(x^3)
所以,x→0时,e^(sinx)-e^x 与 x^3 同阶,所以x→0时,e^(sinx)-e^x 是 x 的3阶无穷小.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.