题目
若f(x)在[a,b]上有二阶导数,且f(b)=0,令F(x)=(x-a)^2f(x),证明:在(a,b)内至少有一点e使得F(e)二阶导数=0
提问时间:2021-02-27
答案
可导必连续,所以函数f(x)在[a,b]内连续
则F(x)也是连续的
根据罗尔定理,F(x)满足
在[a,b]上连续;
在(a,b)内可导;
a≠b;
F(a)=(a-a)²f(a)=0
F(b)=(b-a)²f(b)=0=F(a)
那么在区间(a,b)内至少存在一点 ξ1 (a
则F(x)也是连续的
根据罗尔定理,F(x)满足
在[a,b]上连续;
在(a,b)内可导;
a≠b;
F(a)=(a-a)²f(a)=0
F(b)=(b-a)²f(b)=0=F(a)
那么在区间(a,b)内至少存在一点 ξ1 (a
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点