当前位置: > 若函数f(x)=(x-b)/(x-a)在区间(-无穷大,4)上是增函数,则有 A.a>b>4...
题目
若函数f(x)=(x-b)/(x-a)在区间(-无穷大,4)上是增函数,则有 A.a>b>4
若函数f(x)=(x-b)/(x-a)在区间(-无穷大,4)上是增函数,则有
A.a>b>4 B.a>4>b C.4

提问时间:2021-02-26

答案
解由f(x)=(x-b)/(x-a)
=(x-a+a-b)/(x-a)
=1+(a-b)/(x-a)
故函数的对称中心为(a,1)
且在a-b<0时函数在区间(负无穷大,a)是增函数
又由函数f(x)=(x-b)/(x-a)在区间(-无穷大,4)上是增函数
故a≥4
且a-b<0
即4≤a<b
故选C.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.