题目
数列{an}满足a(n+1)+an=4n-3,若{an}是等差数列,(1)求{an}的通项公式(2)设Sn是{an}的前n项和,
数列{an}满足a(n+1)+an=4n-3,若{an}是等差数列,(1)求{an}的通项公式
(2)设Sn是{an}的前n项和,且a1=1,求S(2n+1)
数列{an}满足a(n+1)+an=4n-3,若{an}是等差数列,(1)求{an}的通项公式
(2)设Sn是{an}的前n项和,且a1=1,求S(2n+1)
提问时间:2021-02-26
答案
(1)a(n+1)+an=4n-3
{an}是等差数列→a(n+1)-an=d
两式相加,a(n+1)=(4n+d-3)/2=2n+(d-3)/2
∴an=2(n-1)+(d-3)/2=2n+(d-3)/2-2=2n+(d-7)/2
两式相减,an=(4n-d-3)/2=2n-(d+3)/2
∴(d-7)/2=-(d+3)/2,d=2
∴an=2n-(d+3)/2=2n-5/2
(2)(a1明明等于-1/2,所以应去掉“{an}是等差数列”的条件)
S(2n+1)
=a1+(a2+a3)+(a4+a5)+...+a(2n)+a(2n+1)
=1+(4*2-3)+(4*4-3)+...+(4*2n-3)
=(8*1+8*2+...+8*n)+1-3(n-1)
=8(1+2+...+n)+1-3n-3
=8*n(n+1)/2-3n-2
=4n(n+1)-3n-2
=4n^2+4n-3n-3
=4n^2+n-3
{an}是等差数列→a(n+1)-an=d
两式相加,a(n+1)=(4n+d-3)/2=2n+(d-3)/2
∴an=2(n-1)+(d-3)/2=2n+(d-3)/2-2=2n+(d-7)/2
两式相减,an=(4n-d-3)/2=2n-(d+3)/2
∴(d-7)/2=-(d+3)/2,d=2
∴an=2n-(d+3)/2=2n-5/2
(2)(a1明明等于-1/2,所以应去掉“{an}是等差数列”的条件)
S(2n+1)
=a1+(a2+a3)+(a4+a5)+...+a(2n)+a(2n+1)
=1+(4*2-3)+(4*4-3)+...+(4*2n-3)
=(8*1+8*2+...+8*n)+1-3(n-1)
=8(1+2+...+n)+1-3n-3
=8*n(n+1)/2-3n-2
=4n(n+1)-3n-2
=4n^2+4n-3n-3
=4n^2+n-3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1一座桥实际造价2100万元,比原计划多用了5%,原计划造价多少万元?
- 2显微镜中最重要的结构是( )和( ).观察“上”字的玻片,视野内看到的物象是( ).
- 3John really likes playing computer games.H____,he only does them in his ferr time 横线上填什么?
- 4“随地吐痰的人,是一种不文明的习惯.”这个句子怎么改?
- 5读先生的《阿Q正传》除了精神胜利法 他身上还有什么鲜明的特点?
- 6把含盐5%的食盐水与含盐8%的食盐水混合制成含盐6%的食盐水600克,分别应取两种食盐水各多少千克?
- 7水的固态液态气态变化过程中哪些作用力被破坏
- 8一个杯子的底面直径是14厘米,高是20厘米,这个杯子能否装下3000毫升的牛奶?
- 914克金属R与足量的稀盐酸反应,可以得到0.5克氢气和RCLx,12g R2Oy(y不等于6)和68.3g稀硝酸溶液完全反应且反应物无剩余,在293K是正好成为饱和溶液.是计算确定RCLx和R2Oy是
- 10用什么词语来赞美老师