当前位置: > 一道初等数论证明题...
题目
一道初等数论证明题
证明:12|(n^4+2n^3+11n^2+10n)

提问时间:2021-02-26

答案
n^4+2n^3+11n^2+10n=n(n+1)[n(n+1)+10]其中前面的n(n+1)一定是偶数,后面的n(n+1)+10也是偶数+偶数=偶数,所以整个算式肯定能被4整除.下面我们来考察这个算式能否被3整除.若n=3k,k为整数,则算式含有n的因子,能被3整除...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.