题目
如果P在平面区域
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
上点Q在曲线x²+(y+2) =1上,那么│PQ│的最小值为()
A,(√5)-1
B,[4/√(5)]-1
C,(2√2)-1
D,(√2)-1
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
上点Q在曲线x²+(y+2) =1上,那么│PQ│的最小值为()
A,(√5)-1
B,[4/√(5)]-1
C,(2√2)-1
D,(√2)-1
提问时间:2021-02-26
答案
先在坐标轴上作出
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
三条直线的相交部分,作为P的可行域.
再在以上的坐标轴上做出曲线x²+(y+2) =1的图像,而点Q是曲线上的点.
任取P、Q两点,连接PQ,将P点、Q点在对应可行域上滑行至两者间的距离最短,则可以大概确定知道P、Q的位置,再根据可行域可以求出具体数值.
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
三条直线的相交部分,作为P的可行域.
再在以上的坐标轴上做出曲线x²+(y+2) =1的图像,而点Q是曲线上的点.
任取P、Q两点,连接PQ,将P点、Q点在对应可行域上滑行至两者间的距离最短,则可以大概确定知道P、Q的位置,再根据可行域可以求出具体数值.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1假如你是李华,校报英语角将举行英语征文比赛,现在请你以My favorite jeans为题,为校报写一篇英语短文.
- 2She is supposed to be reading at home.特别是be reading 该怎么翻译
- 3如图圆锥AB是底面直径,且圆锥母线SA=AB=2r,C是底面圆周上一点满足sin角ABC=1/3求异面直线SC与AB所成角的余弦值
- 4关于英语,填对话
- 5People in the past used e______ tusks to make works of art.
- 6有没有关于毅力的古诗 或是坚持的 形容美好品质的古诗好句
- 7有两堆煤,甲堆煤重85吨,比乙堆煤的7分之4还多5吨.乙堆重多少吨
- 8工商行政管理
- 9NBS的结构是什么
- 10某四合院4户人家合用一台总电表,12月份共付电费107.3元.按每家分电表的千瓦时数分摊电费,算出各家应付
热门考点