题目
关于高数的几个问题~
关于等价无穷小,不用一定要x趋于0时才能用如sinx~x的式子吧,例如lim(x趋于无穷大)f(x)=0,则有sinf(x)~f(x),即只要sinx,e^x-1,ln(1+x)中的x趋于0即可,是不是这样理解?
全书上说:lim(x趋于a)f(x)/g(x)=无穷大/无穷大未定式的洛比达法则可推广为:关于洛必达法则的其他条件不变,但可不比要求lim(X趋于a)f(X)趋于无穷大,为什么?
全书评注上写道:在验证条件∫(0→h(x))f(t)dt=无穷大时,要用到一下结论:lim(x趋于无穷大)f(x)=无穷大或A(A不为0),又lim(x趋于无穷大)h(x)=无穷大,则∫(0→h(x))f(t)dt=无穷大. 其中为什么A不能等于0?
全书评注中有:lim(x趋于0)∫(c趋于x)ln(1+t^2)/tdt=∫(c趋于0)ln(1+t^2)/tdt=①小于0,当c不为0时;②=0,当c=0时. 我想问①的情况为什么是小于0?
求各位大大解决下,能回答几个就几个,
关于等价无穷小,不用一定要x趋于0时才能用如sinx~x的式子吧,例如lim(x趋于无穷大)f(x)=0,则有sinf(x)~f(x),即只要sinx,e^x-1,ln(1+x)中的x趋于0即可,是不是这样理解?
全书上说:lim(x趋于a)f(x)/g(x)=无穷大/无穷大未定式的洛比达法则可推广为:关于洛必达法则的其他条件不变,但可不比要求lim(X趋于a)f(X)趋于无穷大,为什么?
全书评注上写道:在验证条件∫(0→h(x))f(t)dt=无穷大时,要用到一下结论:lim(x趋于无穷大)f(x)=无穷大或A(A不为0),又lim(x趋于无穷大)h(x)=无穷大,则∫(0→h(x))f(t)dt=无穷大. 其中为什么A不能等于0?
全书评注中有:lim(x趋于0)∫(c趋于x)ln(1+t^2)/tdt=∫(c趋于0)ln(1+t^2)/tdt=①小于0,当c不为0时;②=0,当c=0时. 我想问①的情况为什么是小于0?
求各位大大解决下,能回答几个就几个,
提问时间:2021-02-26
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点