题目
正四棱锥P-ABCD中,侧棱AB与底面ABCD所成角的正切值√6/2.
(1)求侧面PAD与底面ABCD所成二面角的大小.
(2)若E是PB中点,求异面直线PD与AE所成角的正切值
(3)在侧面PAD上寻找一点F,使得EF⊥侧面PBC,试确定F的位置,并加以证明
(1)求侧面PAD与底面ABCD所成二面角的大小.
(2)若E是PB中点,求异面直线PD与AE所成角的正切值
(3)在侧面PAD上寻找一点F,使得EF⊥侧面PBC,试确定F的位置,并加以证明
提问时间:2021-02-26
答案
连结AC,BD交于O,连结OP显然OP⊥面ABCD∠PAO即为PA与底面ABCD所成的角故tanPAO=√6/2,设OP=√6a,通过计算,易得:OA=2a,AB=2√2a,PA=√10a(1)过O在面ABCD内作OH⊥AD于H,连结PH,显然H是AD的中点因OP⊥面ABCD故OP⊥AD...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点