当前位置: > 设常数c∈[1,4],求函数f(x)=x+c/x (1≤ x≤2)的最大值和最小值...
题目
设常数c∈[1,4],求函数f(x)=x+c/x (1≤ x≤2)的最大值和最小值

提问时间:2021-02-26

答案
因为c>0,所以可以用基本不等式 f(x)=x+c/x≥2*根号c(当且仅当x=根号c取得最小值) 根号c的范围为【1,2】 刚好对任意x∈【1,2】都满足,所以最小值为2根号c
最大值就是比较f(1)和f(4)的大小了
f(1)-f(4)=c-c/4=3c/4 >0,所以f(1)>f(4)
最大值c+1,最小值2根号c
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.