当前位置: > 证明f(m+x)=f(m-x),则y=f(x)图像关于x=m对称...
题目
证明f(m+x)=f(m-x),则y=f(x)图像关于x=m对称

提问时间:2021-02-25

答案
证明:令t=m+x,则x=t-m.所以由f(m+x)=f(m-x),可得f(t)=f[m-(t-m)]=f(2m-t),即f(t)=f(2m-t).又设y=f(x)图像上任意一点(a,b),则它关于x=m的对称点为(2m-a,b),且f(a)=b.令a=t,则由f(t)=f(2m-t)有f(a)=f(2m-a),所以f(2m-a...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.