题目
如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.
(1)在图1中,你发现线段AC、BD的数量关系是______;直线AC、BD相交成角的度数是______.
(2)将图1的△OAB绕点O顺时针旋转90°角,在图2中画出旋转后的△OAB.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,连接AC、BD得到图3,这时(1)中的两个结论是否成立?作出判断并说明理由.若△OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.
(1)在图1中,你发现线段AC、BD的数量关系是______;直线AC、BD相交成角的度数是______.
(2)将图1的△OAB绕点O顺时针旋转90°角,在图2中画出旋转后的△OAB.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,连接AC、BD得到图3,这时(1)中的两个结论是否成立?作出判断并说明理由.若△OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.
提问时间:2021-02-25
答案
(1)∵△OAB和△OCD都是等腰直角三角形,且叠放在一起,
∴OA=OB,OC=OD,
∴AC=BD,即线段AC、BD的数量关系是相等;
由图可直接看出,直线AC、BD相交成角的度数是90°.
(2)图如上所画.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,则AC仍旧等于BD,直线AC、BD相交成角的度数是90°
∵旋转一个锐角后,∠COA+∠AOD=90°,∠BOD+∠AOD=90°,
∴∠COA=∠BOD,又OC=OD,OA=OB,
∴△COA≌△DOB,∴AC=BD.
延长CA交OD于H,交BD于E,
∵△COA≌△DOB,∴∠OCA=∠BDO,又∠DHE=∠CHO,
∴∠CED=∠COD=90°,
将△OAB绕点O继续旋转更大的角时,结论仍然成立.
∴OA=OB,OC=OD,
∴AC=BD,即线段AC、BD的数量关系是相等;
由图可直接看出,直线AC、BD相交成角的度数是90°.
(2)图如上所画.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,则AC仍旧等于BD,直线AC、BD相交成角的度数是90°
∵旋转一个锐角后,∠COA+∠AOD=90°,∠BOD+∠AOD=90°,
∴∠COA=∠BOD,又OC=OD,OA=OB,
∴△COA≌△DOB,∴AC=BD.
延长CA交OD于H,交BD于E,
∵△COA≌△DOB,∴∠OCA=∠BDO,又∠DHE=∠CHO,
∴∠CED=∠COD=90°,
将△OAB绕点O继续旋转更大的角时,结论仍然成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1我想知道美的空调型号的那些字母和数字都代表什么,
- 2判断函数f(x)=3/x在(-∞,0)上是增函数还是减函数?
- 3珍视友谊的名言警句
- 4什么时候用kilos,什么时候用kilo,什么时候用kilo of?
- 5有关英语特殊疑问句的问题
- 6五分之四吨等于多少千克
- 7电流通过一台电动机一段时间,产生的热量是12000J,得到的机械能是36000J,则电流做功至少为( ) A.12000J B.36000J C.24000J D.48000J
- 8英语翻译
- 9If people find baby pandas alone ,they will ofth take them away.
- 10垃圾分类,六年级同学收集了180个易拉罐,其中1/3是一班收集的,2/5是二班收集的.两班共收集了多少个?
热门考点