当前位置: > 在三角形ABC中,a,b,c分别为角ABC所对边,若a=2b cosC,则此三角形一定是...
题目
在三角形ABC中,a,b,c分别为角ABC所对边,若a=2b cosC,则此三角形一定是

提问时间:2021-02-25

答案
由余弦定理
cosC=(a^2+b^2-c^2)/(2ab)
带回已知,a=2b*cosC=2b*(a^2+b^2-c^2)/(2ab)=(a^2+b^2-c^2)/a
整理得b^2-c^2=0
b c都为三角形边,所以b>0 c>0
继续化简得b=c
所以此三角形一定为等腰三角形
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.