题目
一道数学分析题(微分中值定理),
设f在[a,b]上连续,在(a,b)内可微,又有c∈(a,b)使成立f'(c)=0,证明:存在ξ∈(a,b),满足f'(ξ)=[f(ξ)-f(a)]/(ξ-a)
设f在[a,b]上连续,在(a,b)内可微,又有c∈(a,b)使成立f'(c)=0,证明:存在ξ∈(a,b),满足f'(ξ)=[f(ξ)-f(a)]/(ξ-a)
提问时间:2021-02-25
答案
拉格朗日定理
如果函数 f(x) 满足:
1)在闭区间[a,b]上连续;
2)在开区间(a,b)内可导.
那么:在(a,b)内至少有一点ξ(a
如果函数 f(x) 满足:
1)在闭区间[a,b]上连续;
2)在开区间(a,b)内可导.
那么:在(a,b)内至少有一点ξ(a
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点