题目
如图,已知平面内有两条直线AB、CD,且AB∥CD,P为一动点.
(1)当点P移动到AB、CD之间时,如图(1),这时∠P与∠A、∠C有怎样的关系?证明你的结论.
(2)当点P移动到AB的外侧时,如图(2),是否仍有(1)的结论?如果不是______,请写出你的猜想(不要求证明).
(3)当点P移动到如图(3)的位置时,∠P与∠A、∠C又有怎样的关系?能否利用(1)的结论来证明?还有其他的方法吗?请写出一种.
(1)当点P移动到AB、CD之间时,如图(1),这时∠P与∠A、∠C有怎样的关系?证明你的结论.
(2)当点P移动到AB的外侧时,如图(2),是否仍有(1)的结论?如果不是______,请写出你的猜想(不要求证明).
(3)当点P移动到如图(3)的位置时,∠P与∠A、∠C又有怎样的关系?能否利用(1)的结论来证明?还有其他的方法吗?请写出一种.
提问时间:2021-02-25
答案
证明:(1)∠P=∠A+∠C,
延长AP交CD与点E.
∵AB∥CD,∴∠A=∠AEC.
又∵∠APC是△PCE的外角,
∴∠APC=∠C+∠AEC.
∴∠APC=∠A+∠C.
(2)否;∠P=∠C-∠A.
(3)∠P=360°-(∠A+∠C).
①延长BA到E,延长DC到F,
由(1)得∠P=∠PAE+∠PCF.
∵∠PAE=180°-∠PAB,∠PCF=180°-∠PCD,
∴∠P=360°-(∠PAB+∠PCD).
②连接AC.
∵AB∥CD,∴∠CAB+∠ACD=180°.
∵∠PAC+∠PCA=180°-∠P,
∵∠CAB+∠ACD+∠PAC+∠PCA=360°-∠P,
即∠P=360°-(∠PAB+∠PCD).
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1写一个关于介绍北京的英语作文 200字
- 2面心立方和体心立方晶胞的原子数、配位数和致密度分别是多少?
- 3I like your new trousers.Where did you buy
- 4英语翻译
- 5抛物线x2=4y上一点A的纵坐标为4,则A与抛物线焦点的距离为
- 6王老师从家骑自行车去学校,每小时行16.5千米,o.2小时到达.如果改为步行,每小时走4.5千米,0.7小时能到吗
- 7越挫越勇是什么
- 8这个不定积分怎么算?X倍的e的X次方
- 9通常情况下,对提高光合作用效率影响较小的因素是 A多施化肥 B光照强度 C二氧化碳浓度 D温度
- 10把一根绳子按3:2截成甲、乙两段,已知乙段长4.8米,这根绳子原来长多少米?