当前位置: > 求微分方程y‘‘+5y‘+6y=x+1的通解...
题目
求微分方程y‘‘+5y‘+6y=x+1的通解

提问时间:2021-02-25

答案
先解齐次方程y''+5y'+6y=0,
特征方程:z^2+5z+6=0
解得:z1=-2,z2=-3,
则其通解为:
y*=C1*e^(-2x)+C2*e^(-3x).
再求其特解:
根据原方程,可设其特解为:
y0=ax+b
则y0'=a
y0''=0
代回原方程,得:
6ax+(5a+6b)=x+1
解得:a=1/6,b=1/36.
即y0=x/6+1/36.
所以原方程的通解为:
y=y*+y0=C1e^(-2x)+C2e^(-3x)+x/6+1/36.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.