当前位置: > 如果一个正整数能表示为两个连续偶数的平法查,那么称这个正整数为“神秘数”....
题目
如果一个正整数能表示为两个连续偶数的平法查,那么称这个正整数为“神秘数”.
如:4=2²—0²,12=4²—2²,20=6²—4²,因此4,12,20都是“神秘数”
(1)28和2012这两个数是神秘数吗?为什么?
(2)证明:“神秘数”鄙视4的正奇数倍;
(3)两个连续奇数的平方差(取正数)是“神秘数”吗?为什么?

提问时间:2021-02-25

答案
从定义中可以看出,“神秘数”就是可以表示成(n+2)²-n²的数,其中n偶数
(1)令(n+2)²-n²=28,则n=6是偶数,∴28是"神秘数"
令(n+2)²-n²=2012,则n=502是偶数,∴2012是"神秘数"
(2)∵(n+2)²-n²=4n+4=4(n+1)
而n为偶数,n+1为奇数
∴(n+2)²-n²为4的正奇数倍
(3)∵(2k+3)²-(2k+1)²=2(4k+4)=4(2k+2)是4的正偶数倍
∴两个连续奇数的平方差不是“神秘数”
不懂可追问,有帮助请采纳,谢谢!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.