当前位置: > 如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3,第(2)个多边形由正方形“扩展”而来,边数记为a4,…,依此类推,由正n边形“扩展”而来的多边形的边数记为an(n≥3)...
题目
如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3,第(2)个多边形由正方形“扩展”而来,边数记为a4,…,依此类推,由正n边形“扩展”而来的多边形的边数记为an(n≥3),当
1
a

提问时间:2021-02-25

答案
观察图形可得:an=n(n+1);
1
a3
+
1
a4
+
1
a5
+…+
1
an
=
197
600

1
3×4
+
1
4×5
+…+
1
n(n+1)
=
1
3
-
1
4
+
1
4
-
1
5
…+
1
n
-
1
n+1
=
1
3
-
1
n+1
=
197
600

解得n=199.
故答案为:199.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.