题目
设函数f(x)=
x3-mx2+(m2-4)x,x∈R.已知函数f(x)有三个互不相同的零点0,α,β,且α<β.若对任意的x∈[α,β],都有f(x)≥f(1)恒成立,求实数m的取值范围.
1 |
3 |
提问时间:2021-02-24
答案
f′(x)=x2-2mx+(m2-4),令f′(x)=0,得x=m-2或x=m+2.
当x∈(-∞,m-2)时,f′(x)>0,f(x)在(-∞,m-2)上是增函数;
当x∈(m-2,m+2)时,f′(x)<0,f(x)在(m-2,m+2)上是减函数;
当x∈(m+2,+∞)时,f′(x)>0,f(x)在(m+2,+∞)上是增函数.
因为函数f(x)有三个互不相同的零点0,α,β,且f(x)=
x[x2-3mx+3(m2-4)],
所以
解得m∈(-4,-2)∪(-2,2)∪(2,4).
当m∈(-4,-2)时,m-2<m+2<0,所以α<m-2<β<m+2<0.
此时f(α)=0,f(1)>f(0)=0,与题意不合,故舍去;
当m∈(-2,2)时,m-2<0<m+2,所以α<m-2<0<m+2<β.
因为对任意的x∈[α,β],都有f(x)≥f(1)恒成立,所以α<1<β.
所以f(1)为函数f(x)在[α,β]上的最小值.
因为当x=m+2时,函数f(x)在[α,β]上取最小值,所以m+2=1,即m=-1;
当m∈(2,4)时,0<m-2<m+2,所以0<α<m-2<m+2<β.
因为对任意的x∈[α,β],都有f(x)≥f(1)恒成立,所以α<1<β.
所以f(1)为函数f(x)在[α,β]上的最小值.
因为当x=m+2时,函数f(x)在[α,β]上取最小值,
所以m+2=1,即m=-1(舍去).
综上可知,m的取值范围是{-1}.
当x∈(-∞,m-2)时,f′(x)>0,f(x)在(-∞,m-2)上是增函数;
当x∈(m-2,m+2)时,f′(x)<0,f(x)在(m-2,m+2)上是减函数;
当x∈(m+2,+∞)时,f′(x)>0,f(x)在(m+2,+∞)上是增函数.
因为函数f(x)有三个互不相同的零点0,α,β,且f(x)=
1 |
3 |
所以
|
解得m∈(-4,-2)∪(-2,2)∪(2,4).
当m∈(-4,-2)时,m-2<m+2<0,所以α<m-2<β<m+2<0.
此时f(α)=0,f(1)>f(0)=0,与题意不合,故舍去;
当m∈(-2,2)时,m-2<0<m+2,所以α<m-2<0<m+2<β.
因为对任意的x∈[α,β],都有f(x)≥f(1)恒成立,所以α<1<β.
所以f(1)为函数f(x)在[α,β]上的最小值.
因为当x=m+2时,函数f(x)在[α,β]上取最小值,所以m+2=1,即m=-1;
当m∈(2,4)时,0<m-2<m+2,所以0<α<m-2<m+2<β.
因为对任意的x∈[α,β],都有f(x)≥f(1)恒成立,所以α<1<β.
所以f(1)为函数f(x)在[α,β]上的最小值.
因为当x=m+2时,函数f(x)在[α,β]上取最小值,
所以m+2=1,即m=-1(舍去).
综上可知,m的取值范围是{-1}.
本题利用导数来研究恒成立问题.先求出f(x)的导数,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,利用单调性结合函数的图象研究函数f(x)的零点分布问题,最后转化为一个一元二次方程的根的分布问题.
利用导数求闭区间上函数的最值.
本小题主要考查函数单调性的应用、利用导数求闭区间上函数的最值、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、分类讨论思想.属于基础题.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1经过同学们的耐心帮助使他认识到了自己的错误提高了认识修改病句
- 2人教版七年级下册数学天下通5,
- 3有关名言和名言的故事
- 4比集运量 名词解释植物生理学
- 5下列各组式子中,不是互为有理化因式的是( ) A.(根号x-根号y)和-(根号x+根号y) B.(根号a+根号b)和(...
- 6请用忍俊不禁,天伦之乐,豆蔻年华,戛然而止来写一段话(把全部成语包括进去)
- 7A trade companyneeds a secretary.Zhang Jing applies for the job.And now she is talking to Mr.Green t
- 8一个数加上这个数和它的倒数的积后得2又3分之2,这个数是( )
- 9玉米是雌雄同株、异化授粉植物,可本植株的花粉,也能接受其 他植株的花粉.在一块农田间行种植等数量基因
- 10长方形面积是216米,长是27米,长增加到54米,宽不变,增加后的长方形面积是多少?