当前位置: > 怎样证明无限循环群和任意循环群同态?...
题目
怎样证明无限循环群和任意循环群同态?

提问时间:2021-02-24

答案
设G=<x是无限循环群,x是其生成元;H=<a是一个n阶循环群,a是其生成元.定义映射σ:G -H,x-a.直接验证可知σ是G到H的一个群同态.进一步地,容易证明σ是一个满同态(即σ的像=H),其同态核=<x^n,即由x^n生成的子群.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.