当前位置: > 满足arcsinx+arctan(1/7)=派/4的x值等于...
题目
满足arcsinx+arctan(1/7)=派/4的x值等于

提问时间:2021-02-24

答案
设arctan(1/7)=a,则arcsinx=派/4-a
有:tana=1/7,sin(派/4-a)=(根号2)/2*(cosa-sina)=x
根据 arc函数定义,a为锐角,
tana=sina/cosa=[根号(1-cosa的平方)]/cosa=1/7
cosa=(-1+根号9605)/98,则sina=根号(2根号9605-2)/98
x=(根号2)/2*{(-1+根号9605)/98-根号(2根号9605-2)/98}
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.