当前位置: > 已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A. (1)判断直线BD与⊙O的位置关系,并证明你的结论; (2)若B...
题目
已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若BC=2,BD=
5
2
,求
AD
AO
的值.

提问时间:2021-02-24

答案
(1)直线BD与⊙O相切.证明:如图1,连接OD.∵OA=OD,∴∠A=∠ADO.∵∠C=90°,∴∠CBD+∠CDB=90°.又∵∠CBD=∠A,∴∠ADO+∠CDB=90°.∴∠ODB=90°.∴直线BD与⊙O相切.(2)解法一:如图1,连接DE.∵∠C=9...
(1)先断定直线BD与⊙O相切,再作证明:连接OD,由OA=OD,∠C=90°,得出∠A=∠ADO,∠CBD+∠CDB=90°,再由∠CBD=∠A,得出∠ADO+∠CDB=90°,∠ODB=90°,所以直线BD与⊙O相切;
(2)此题有两种解法:以解法一为例:连接DE,由∠C=90°,BC=2,BD=
5
2
,求出cos∠CBD的值,然后由AE是⊙O的直径,得到∠ADE=90°,cosA=
AD
AE
.再由∠CBD=∠A,得到
AD
AE
=
BC
BD
=
4
5
,又因为AE=2AO,所以求
AD
AO
的值就容易了.

切线的判定与性质;圆周角定理;解直角三角形.

本题考查了切线的判断与性质、圆周角定理、以及解直角三角形的知识,此题综合性较强,做起来要认真、仔细才行.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.