题目
抛物线C:y^2=2px(p>0)的焦点为F,过点F的直线与此抛物线交于
抛物线C:y^2=2px(p>0)的焦点为F,过F的直线L与抛物线交于P,Q两点 且向量FP=-2向量FQ.(1)求直线L的斜率 (2)若|PQ|=9/2 求抛物线方程
抛物线C:y^2=2px(p>0)的焦点为F,过F的直线L与抛物线交于P,Q两点 且向量FP=-2向量FQ.(1)求直线L的斜率 (2)若|PQ|=9/2 求抛物线方程
提问时间:2021-02-24
答案
不妨先设P在x轴上方,
设L:y=k(x-p/2),与y^2=2px联立,消去x,得y(P)*y(Q)=-p^2
又由题,得y(P)=-2*y(Q)
由两式可解得y(P)=p*√2,y(Q)=-p*√2/2.
所以PQ的斜率为k=2p/[y(P)+y(Q)]=2√2
根据对称性,得k=-2√2
设L:y=k(x-p/2),与y^2=2px联立,消去x,得y(P)*y(Q)=-p^2
又由题,得y(P)=-2*y(Q)
由两式可解得y(P)=p*√2,y(Q)=-p*√2/2.
所以PQ的斜率为k=2p/[y(P)+y(Q)]=2√2
根据对称性,得k=-2√2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点