当前位置: > 一道经典数学几何题!...
题目
一道经典数学几何题!
已知△ABC的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.(1)证明:BDHE四点共圆.(2)证明:CE平分∠DEF.

提问时间:2021-02-23

答案
证明:
(1)因为CE、AD为角平分线,又因为∠B=60度,所以有∠CAB+∠BCA = 120°,∠ACH+∠CAH=60°,在△AHC中有∠CHA=120° ,所以∠DHE = 120°,既有四边形EBDH对角之和为180°,所以四点共圆
(2)连接EF、FH、FD、ED,因为AE=AF,所以AH垂直平分于EF,而∠DHE = 120°,所以FH = HE,∠FEH = ∠EFH =30°,∠FHE =120°,所以∠FHD=120°,以,∠FHA =∠FHC=60°,所以CE垂直平分FD,故△FDE为等边三角形,所以CE平分∠DEF.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.