当前位置: > 是否存在某个实数m,使得方程x2+mx+2=0和x2+2x+m=0有且只有一个公共的实根?如果存在,求出这个实数m及两方程的公共实根;如果不存在,请说明理由....
题目
是否存在某个实数m,使得方程x2+mx+2=0和x2+2x+m=0有且只有一个公共的实根?如果存在,求出这个实数m及两方程的公共实根;如果不存在,请说明理由.

提问时间:2021-02-23

答案
假设存在符合条件的实数m,且设这两个方程的公共实数根为a,则
a2+ma+2=0     ①
a2+2a+m=0      ②

①-②,得
a(m-2)+(2-m)=0
(m-2)(a-1)=0
∴m=2 或a=1.
当m=2时,已知两个方程是同一个方程,且没有实数根,故m=2舍去;
当a=1时,代入②得m=-3,
把m=-3代入已知方程,求出公共根为x=1.
故实数m=-3,两方程的公共根为x=1.
设两方程的公共根为a,然后将两方程相减,消去二次项,求出公共根和m的值.

一元二次方程的解;一元二次方程的定义.

本题考查的是两个一元二次方程的公共根的问题,一般情况是将两方程相减求出公共根,再求出其中的字母系数.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.