题目
已知点E、F分别在正方形ABCD的边BC、CD上,且∠DAF=∠EAF.求证:AE=BE+DF
要详细过程
要详细过程
提问时间:2021-02-22
答案
看图令正方形的边长为a,角DAF=α,角EAF=α,则角AEB=2α
由于tagα=DF/AD,所以DF=AD*tagα=atagα
tag2α=AB/BE,所以BE=AB/tag2α=a/tag2α
BE+DF=a/tag2α+a*tagα
=a*(1-tagα^2)/(2*tagα)+a*tagα
=a*(1-tagα^2)/(2*tagα)+a*2tagα^2/(2*tagα)
=a*(1+tagα^2)/(2*tagα)
=a/(2*tagα*cosα^2)
=a/sin(2α)
AE^2=AB^2+BE^2
=a^2+a^2/tag(2α)^2
=a^2[1+1/tag(2α)^2]
=a^2*(sec2α)^2/tag(2α)^2
=a^2/sin(2α)^2
所以AE=a/sin(2α)
因此,BE+DF=AE,原命题得证
注释:^2表示平方,考虑到α和2α均为锐角,所以对它们正弦、余弦等的开方均为正值
由于tagα=DF/AD,所以DF=AD*tagα=atagα
tag2α=AB/BE,所以BE=AB/tag2α=a/tag2α
BE+DF=a/tag2α+a*tagα
=a*(1-tagα^2)/(2*tagα)+a*tagα
=a*(1-tagα^2)/(2*tagα)+a*2tagα^2/(2*tagα)
=a*(1+tagα^2)/(2*tagα)
=a/(2*tagα*cosα^2)
=a/sin(2α)
AE^2=AB^2+BE^2
=a^2+a^2/tag(2α)^2
=a^2[1+1/tag(2α)^2]
=a^2*(sec2α)^2/tag(2α)^2
=a^2/sin(2α)^2
所以AE=a/sin(2α)
因此,BE+DF=AE,原命题得证
注释:^2表示平方,考虑到α和2α均为锐角,所以对它们正弦、余弦等的开方均为正值
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1小石潭记课后题答案全部
- 2lim x趋近于正无穷 (e^x-1)/x=
- 3勾股定理弦图的证法?
- 4化简分式[x/(x+1)-2/(x^2-1)]÷(x^2-4)/(x^2-2x+1)
- 5a=6,b=4,c=2, !(a-b)+c-1&&b+c/2 的值? a=6,b=4,c=3
- 6从甲地去乙地,去时每小时行20千米,3小时到达,返回时每小时行30千米,求往返一次的平均速度
- 7用matlab语言怎么将一个秩为1的矩阵分解成列向量和行向量相乘形式
- 8方程|x|+|y|=2所表示的图形在坐标系中所围成的图形的面积是
- 9he went to school yesterday.改成否定句
- 10成语坚韧不拔 一暴十寒 无坚不摧这些是什么意思
热门考点