题目
已知向量a=(x,y + 根号3),向量b=(x,y - 根号3),且/a/+/b/=4
过点Q(0,1)做直线L与曲线C交于A,B两点,设向量OP=向量OA+向量OB(O为原点),问是否存在这样的直线L,使得四边形OAPB是矩形?若存在,求出直线L的方程.若不存在,说明理由.
过点Q(0,1)做直线L与曲线C交于A,B两点,设向量OP=向量OA+向量OB(O为原点),问是否存在这样的直线L,使得四边形OAPB是矩形?若存在,求出直线L的方程.若不存在,说明理由.
提问时间:2021-02-22
答案
请问和向量a b 有何关系,提问应该把问题说清楚
此题漏了:(x,y)是曲线c上的点
由 /a/+/b/=4得
√[x^2+(y+√3)^2]+√[x^2+(y-√3)^2]=4
由椭圆定义知 曲线C 是 c=√3 a=2 的椭圆 方程为:
x^2/4+y^2=1 ..(1)
设L的方程为 y-1=kx .(2)
设 A (s,t),B (p,q)
OP=(s+p,t+q) 则 P(s+p,t+q)
得BP=(s,t) 所以 OA=BP OAPB是平行四边形
(2)带入(1)得(1+k^2)x^2+8kx=0,由韦达定理得
s=0 p=-8k/(1+k^2)
t=1 q=1-8k^2/(1+k^2)
若OAPB是矩形 ,则 OA垂直OB ,所以
OA*OB=0 即 sp+tq=0
OA*OB=sp+tq=1-8k^2/(1+k^2)=0
1-8k^2=0 k=√2/4 或k=-√2/4
所以存在L :y=√2/4x +1 和y=-√2/4x+1使得四边形OAPB是矩形
此题漏了:(x,y)是曲线c上的点
由 /a/+/b/=4得
√[x^2+(y+√3)^2]+√[x^2+(y-√3)^2]=4
由椭圆定义知 曲线C 是 c=√3 a=2 的椭圆 方程为:
x^2/4+y^2=1 ..(1)
设L的方程为 y-1=kx .(2)
设 A (s,t),B (p,q)
OP=(s+p,t+q) 则 P(s+p,t+q)
得BP=(s,t) 所以 OA=BP OAPB是平行四边形
(2)带入(1)得(1+k^2)x^2+8kx=0,由韦达定理得
s=0 p=-8k/(1+k^2)
t=1 q=1-8k^2/(1+k^2)
若OAPB是矩形 ,则 OA垂直OB ,所以
OA*OB=0 即 sp+tq=0
OA*OB=sp+tq=1-8k^2/(1+k^2)=0
1-8k^2=0 k=√2/4 或k=-√2/4
所以存在L :y=√2/4x +1 和y=-√2/4x+1使得四边形OAPB是矩形
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1描写花园的景色的词语
- 2一筐香蕉连筐重26.8千克,卖出一半香蕉后,连筐重14.3千克.这筐香蕉有多少千克?筐重多少千克?
- 3改病句:阅读名著使我开拓视野,也提高了我的写作
- 4There are many tall trees on___side of the street.A.both B.all C.either D.neither 选什么?为什么?
- 5a,b为实数,由a^2+b^2=1 可以得到2ab小于等于a^2+b^2,所以ab小于等于1/2
- 6The personhood is really difficult and I despised villain 这句话是啥意思,谁来翻译一下
- 7A,B为两个随机事件,P(A)=1/2,P(B)=3/5,P(B|A非)=2/5,求P(A∪B非)
- 8一个笔画个花什么成语
- 9黄山有泰山之什么?华山之什么?嵩山之什么?衡山之什么?恒山之什么?
- 10stem cell line