题目
(1)是否存在正整数m,n,使得m(m+2)=n(n+1)?
(2)设k(k≥3)是给定的正整数,是否存在正整数m,n,使得m(m+k)=n(n+1)?
(2)设k(k≥3)是给定的正整数,是否存在正整数m,n,使得m(m+k)=n(n+1)?
提问时间:2021-02-22
答案
(1)答案是否定的.若存在正整数m,n,使得m(m+2)=n(n+1),则(m+1)2=n2+n+1,显然n>1,于是n2<n2+n+1<(n+1)2,所以,n2+n+1不是平方数,矛盾. (5分)
(2)当k=3时,若存在正整数m,n,满足m(m+3)=n(n+1),则4m2+12m=4n2+4n,(2m+3)2=(2n+1)2+8,(2m+3-2n-1)(2m+3+2n+1)=8,(m-n+1)(m+n+2)=2,而m+n+2>2,故上式不可能成立. (10分)
当k≥4时,若k=2t(t是不小于2的整数)为偶数,取m=t2-t,n=t2-1则m(m+k)=(t2-t)(t2+t)=t4-t2,
n(n+1)=(t2-1)t2=t4-t2,因此这样的(m,n)满足条件.若k=2t+1(t是不小于2的整数)为奇数,取
m=
,n=
则m(m+k)=
(
+2t+1)=
(t4+2t3-t2-2t),n(n+1)=
•
=
(t4+2t3-t2-2t),因此这样的(m,n)满足条件.综上所述,当k=3时,答案是否定的;当k≥4时,答案是肯定的.
(15分)
(2)当k=3时,若存在正整数m,n,满足m(m+3)=n(n+1),则4m2+12m=4n2+4n,(2m+3)2=(2n+1)2+8,(2m+3-2n-1)(2m+3+2n+1)=8,(m-n+1)(m+n+2)=2,而m+n+2>2,故上式不可能成立. (10分)
当k≥4时,若k=2t(t是不小于2的整数)为偶数,取m=t2-t,n=t2-1则m(m+k)=(t2-t)(t2+t)=t4-t2,
n(n+1)=(t2-1)t2=t4-t2,因此这样的(m,n)满足条件.若k=2t+1(t是不小于2的整数)为奇数,取
m=
t2−t |
2 |
t2+t−2 |
2 |
t2−t |
2 |
t2−t |
2 |
1 |
4 |
t2+t−2 |
2 |
t2+t |
2 |
1 |
4 |
(15分)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1Many people go shopping in it every day(改为同义句) ___ ____people go shopping in it every day
- 2录字加个偏旁,在组词
- 3用一块金属钨制成灯泡中的钨丝,是利用了它的------、------------、-------等------性质.
- 4不等式lx-1l≤x的解集是?
- 5设y=f(x)的反函数为y=f^-1(x),又y=f(x+2)与 y=f^-1(x-1)互为反函数,则y=f^-1(2009)- y=f^-1(1)的值为
- 6He looked-------(happy)at the bad news.
- 7吁(Xu)可以组什么词语?
- 8七分之三x加四等于二分之一x这个方程怎么解
- 9太阳直射点
- 10英语翻译
热门考点