题目
已知,在△ABC中,CA=CB,∠C=90°,D为AB上任意一点,AE⊥CD,垂足为E,BF⊥CD,垂足为F,求证:EF=|AE-BF|.
提问时间:2021-02-21
答案
证明:∵AE⊥CD,
∴∠AEC=90°,
∴∠ACE+∠CAE=90°,(直角三角形两个锐角互余)
∵∠ACE+∠BCF=90°,
∴∠CAE=∠BCF,(等角的余角相等)
∵AE⊥CD,BF⊥CD,
∴∠AEC=∠BFC=90°,
在△ACE与△CBF中,
∴△ACE≌△CBF(AAS),
∴AE=CF,CE=BF,
∴EF=CE-CF=BF-AE,
当AE>BF时,如图,
同法可求EF=AE-BF,
即EF=|AE-BF|.
∴∠AEC=90°,
∴∠ACE+∠CAE=90°,(直角三角形两个锐角互余)
∵∠ACE+∠BCF=90°,
∴∠CAE=∠BCF,(等角的余角相等)
∵AE⊥CD,BF⊥CD,
∴∠AEC=∠BFC=90°,
在△ACE与△CBF中,
|
∴△ACE≌△CBF(AAS),
∴AE=CF,CE=BF,
∴EF=CE-CF=BF-AE,
当AE>BF时,如图,
同法可求EF=AE-BF,
即EF=|AE-BF|.
根据等腰直角三角形的性质得出∠CAE=∠BCF,又因为AC=BC,AE⊥CD于E,BF⊥CD交CD的延长线于F,根据AAS证明△ACE≌△CBF,根据全等三角形的性质与等量关系即可得出结论
全等三角形的判定与性质.
本题主要考查了等腰直角三角形的性质及全等三角形的判定和性质的应用,主要考查学生的推理能力,题目比较好,难度适中.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 14.73-【2又3分之2-(1又5分之4+2.63)】-3分之1
- 2比的应用
- 3树因不材而得以终其天年,下一句是什么?说人的也是这个意思,我想不起来了
- 4利用二次函数的图案、求一元二次方程—x2+2x+5=0de的近似根(精确到0.1)
- 5f(x)=a[x-b]+2的对称轴怎么求?(注:"[ ]"是绝对值符号)
- 6Yesterday I have come back from China.这句话里有Yesterday ,为什么还能用现在完成时呢?
- 7把一个减法算式里的被减数,减数与差相加,得数是592.已知减数比差的2倍还大2,减数是_.
- 8我的理想是做一个钢琴家,
- 9一个半圆形的花坛,周长是51.4米,这个花坛的直径是多少米?
- 10玻璃与塑料的不同点