当前位置: > 设函数f(x)的定义域为R,且对于任意实数a,b,都有f(a+b)+f(ab)=2f(a)f(b),求证:f(x)为偶...
题目
设函数f(x)的定义域为R,且对于任意实数a,b,都有f(a+b)+f(ab)=2f(a)f(b),求证:f(x)为偶

提问时间:2021-02-20

答案
f(a+b)+f(ab)=2f(a)f(b)
当a=b=0
则:f(0)+f(0)=2f(0)f(0)
f(0)(1-f(0))=0
f(0)=0或1
当a=x,b=0
则:f(x)+f(0)=2f(0)f(x)
f(x)=f(0)/[2f(0)-1]
f(x)=0或1
所以:f(x)为常函数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.