当前位置: > 已知f(x)的二阶导数小于0,用拉格朗日定理证明f(X1+x2/2)>f(x1)+f(X2)/2,谢谢....
题目
已知f(x)的二阶导数小于0,用拉格朗日定理证明f(X1+x2/2)>f(x1)+f(X2)/2,谢谢.

提问时间:2021-02-20

答案
记c=(x1+x2)/2,d=(x2-x1)/2,
对[x1,c]用Lagrange中值定理得到(x1,c)中存在t1使得f'(t1)=[f(c)-f(x1)]/d;
对[c,x2]用Lagrange中值定理得到(c,x2)中存在t2使得f'(t2)=[f(x2)-f(c)]/d.
由于f''(x)<0,f'(x)是递减的,从而f'(t1)-f'(t2)>0,化简一下就是f(c)>[f(x1)+f(x2)]/2.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.