当前位置: > 将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图). (1)如果正方形边长为2,M为CD边中点.求EM的长. (2)如果M为CD边的中...
题目
将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).

(1)如果正方形边长为2,M为CD边中点.求EM的长.
(2)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;
(3)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否与点M的位置有关?若有关,请把△CMG的周长用含DM的长x的代数式表示;若无关,请说明理由.

提问时间:2021-02-19

答案
证明:(1)DE为x,则DM=1,EM=EA=2-x,
在Rt△DEM中,∠D=90°,
∴DE2+DM2=EM2
x2+12=(2-x)2
x=
3
4

∴EM=
5
4

(2)设正方形的边长为2,由(1)知,DE=
3
4
,DM=1,EM=
5
4

∴DE:DM:EM=3:4:5;
(3)△CMG的周长与点M的位置无关.
证明:设DM=x,DE=y,则CM=2a-x,EM=2a-y,
∵∠EMG=90°,
∴∠DME+∠CMG=90°.
∵∠DME+∠DEM=90°,
∴∠DEM=∠CMG,
又∵∠D=∠C=90°△DEM∽△CMG,
CG
DM
CM
DE
MG
EM
CG
x
=
2a−x
y
=
MG
2a−y

∴CG=
x(2a−x)
y
,MG=
(2a−x)(2a−y)
y

△CMG的周长为CM+CG+MG=
4a2x2
y

在Rt△DEM中,DM2+DE2=EM2
即x2+y2=(2a-y)2
整理得4a2-x2=4ay,
∴CM+MG+CG=
4ay
y
=4a.
所以△CMG,的周长为4a,与点M的位置无关.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.