当前位置: > y=ln(x+a)+x^2若y有极值,求a的范围,并证明所有极值和大于ln(e/2)...
题目
y=ln(x+a)+x^2若y有极值,求a的范围,并证明所有极值和大于ln(e/2)

提问时间:2021-02-19

答案
对f(x)=ln(x+a)+x^2求导得:
f'(x)=1/(x+a)+2x
令f'(x)=0 化简得到关于x的方程x^2+ax+1/2=0 [*].当方程有解时,设它的两个根是p,q,由根与系数关系:p+q=-a,pq=(1/2)
要使方程有解必须使a^2-4*1*(1/2)>=0
即|a|>=根号2;
还要使x+a=-1/(2x)>0(使对数式有意义),所以方程至少有一个负根,而由pq=1/2知道两根同号,由p+q=-a知道a必须是正数
所以a的取值范围是a>=根号2.
若a=根号2,方程[*]只有一个根(是重根)p=q=(根号2)/2,此时极值之和为f((根号2)/2)=(1/2)ln(e/2)根号2时,p不等于q,极值之和
f(p)+f(q)
=ln(p+a)+p^2+ln(q+a)+q^2
=ln[(p+a)(q+a)]+p^2+q^2
=ln[pq+a(p+q)+a^2]+(p+q)^2-2pq
=ln[(1/2)+a(-a)+a^2]+(-a)^2-2*(1/2)
=ln(1/2)+a^2-1
>ln(1/2)+2-1=ln(e/2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.