当前位置: > 设A为n阶矩阵,A^k=0,k>1为整数,证明En-A可逆,且(En-A)^(-1)=En+A+A^2+...+A^(k-1)....
题目
设A为n阶矩阵,A^k=0,k>1为整数,证明En-A可逆,且(En-A)^(-1)=En+A+A^2+...+A^(k-1).

提问时间:2021-02-19

答案
因为(En-A){En+A+A^2+...+A^(k-1)}=En-A^k=En-0=En,
{En+A+A^2+...+A^(k-1)}(En-A)=En-A^k=En-0=En,
根据矩阵可逆的定义,可知En-A可逆,且(En-A)^(-1)=En+A+A^2+...+A^(k-1).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.